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Abstract

The maximum, minimum, Gaussian, and mean curvatures of a folded bedding surface are calculated from a high resolution data set. These
data were collected using real-time kinematic (RTK) GPS and processed using commercially available software. The curvature parameters are
calculated analytically from the first and second fundamental forms of the folded surface. Matrix algebra makes this method efficient for large
data sets. Contoured maps of the curvature parameters can then be used as basemaps for the interpretation of other structural information such as
fracture densities and orientations. This method provides precise analysis of folded surfaces in three dimensions and the data can be incorporated
into larger-scale data sets obtained from seismic surveys.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial variation in parameters such as principal, Gaussian,
and mean curvatures has been used to examine the relationship
between the geometry of folded surfaces and properties such
as fracture density and orientation (Lisle, 1994; Fischer and
Wilkerson, 2000; Hennings et al., 2000; Masaferro et al.,
2003). Since these properties can strongly influence the per-
meability anisotropy of hydrocarbon reservoir rocks (Rawnsley
et al., in press), analysis of fold curvature can give important
insights during reservoir modelling (e.g. Stewart and Podolski,
1998). These curvature parameters can be calculated for a
deformed bedding surface from data sets of three-dimensional
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geospatial measurements (Lisle, 1992, 1994; Bergbauer and
Pollard, 2003a,b; Lisle and Martinez, 2005).

In this paper we describe the acquisition of spatial data
from folded strata using high-precision Real-Time Kinematic
(RTK) GPS, and show how these data can be used to calculate
curvature parameters that describe the folded surface. Matrix
algebra is used to process the large volumes of data collected
using RTK GPS. This combination of innovative data collec-
tion and detailed data analysis using matrix algebra has the po-
tential to refine reservoir models by increasing our
understanding of quantitative geospatial relationships between
folding and fracturing (Smith et al., in preparation).

Geometric analysis forms the basis of traditional fold clas-
sification (e.g. Fleuty, 1964; Ramsay, 1967; Hudleston, 1973;
Ramsay and Huber, 1987) and is used to infer which mecha-
nisms are most likely to have caused fold formation (e.g.
Ramsay, 1967; Twiss and Moores, 1992; Hatcher, 1995; Mitra,
2003). Many of these classification schemes and analysis
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techniques are only applicable in the 2D profile plane (e.g. dip
isogons). Classification methods that consider deformation in
the third dimension are generally qualitative, and consider
idealised fold geometry (e.g. Williams and Chapman, 1979).
Bergbauer and Pollard (2003a) have demonstrated how curva-
ture analysis based on approximate mathematical descriptions
of generalised fold geometries can lead to large errors when
considering more complex areas of non-cylindrical folding.
With the advent of spatially precise data sets such as those ob-
tained by 3D seismic surveys or GPS (as used here), more
quantitative analysis of 3D fold geometry is possible.

2. Methodology

2.1. Data collection

The RTK GPS data set used in this paper was collected
from a single folded bedding surface (Fig. 1) in massively-
bedded Dinantian limestones exposed on the foreshore at Ho-
wick, Northumberland, UK (Tucker, 1995). The rocks in this
region have experienced heterogeneous transtensional defor-
mation which has given rise to non-cylindrical periclinal fold-
ing and complex arrays of interlinked fracture sets (De Paola
et al., 2005).

The RTK GPS system consists of pole-mounted differential
GPS receivers (‘‘rover units’’), connected via a radio link to
a static base station which continuously collects positional
data from GPS satellites for the duration of the survey. Be-
cause RTK data collection is rapid, it is possible to measure
large areas of folded bedding surfaces using a dense sampling
grid. For each measurement position, the location, in 3D
space, of the point is stored on the rover along with any attri-
butes ascribed to that point (e.g. lithology, strike and dip of
bedding, reference number). For our study at Howick, the
data were collected with two rover units over two days and
have a spacing of 30e50 cm between points. The typical spac-
ing between points is determined by the size of the target

Fig. 1. Analysis of folded bedding surface at Howick, Northumberland, using

RTK GPS. View looking south east.
structure and the level of detail required. In this case, the
wavelength of the major fold in the surface is approximately
20 m, which can be accurately described by 40e50 points
for each transect across the surface.

As long as sufficient GPS satellites are in suitable orbits
during the survey, the relative spatial precision of RTK mea-
surements is normally better than 10 mm horizontally and
20 mm vertically. Spatial accuracy of the raw data within
a global reference frame is significantly lower (typically
0.5 m). After completion of the survey, accuracy can be in-
creased to match the level of precision by post-processing
the data using standard correction files (Ordnance Survey Ac-
tive RINEX and NASA precise ephemeris data). This post-
processing allows multiple surveys collected over a number
of days to be precisely matched to each other, and to be com-
bined with other forms of geospatially referenced data using
systems such as ArcGIS (Jones et al., 2004; McCaffrey
et al., 2005a).

2.2. Curvature analysis

2.2.1. Defining curvature in three dimensions
In two-dimensions, the curvature, k, of a curve z¼ f(x), is

defined as follows

k ¼
d2z

dx2�
1þ

�
dz

dx

�2�3=2
ð1Þ

where z is the ordinate and x the abscissa (e.g. see Ramsay,
1967, pp. 346e347). Following this definition, crests and
troughs are defined by the following equation:

dz

dx
¼ 0 ð2Þ

(not dx=dz ¼ 0 as shown erroneously by Ramsay, 1967,
p. 347).

Curvature can be positive, negative or zero, denoting con-
cave up (i.e. a trough), concave down (i.e. a crest), or flat
structures, respectively. In 3D, at any given point on a surface
there are an infinite number of directions through the point,
each with its own curvature value. However, for each point,
there are maximum (k1) and minimum (k2) curvature values
and corresponding directions, called the principal curvature
values and directions, respectively. Contouring values of k1

to identify regions of high and low curvature provides a geo-
metric basemap for analysis of attributes such as fracture den-
sity. It is also possible to test the correlation between the
orientation of k1 and k2 and the orientation of these fracture
sets. Two further parameters, the Gaussian and mean curva-
tures, fully describe the shape and orientation of folded surfaces,
allowing dome, saddle and cylindrical forms to be distin-
guished (Lisle, 1994; Roberts, 2001; Bergbauer and Pollard,
2003a).
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2.2.2. Refining data
The raw RTK data set was systematically collected by sam-

pling along an approximate grid. It is not necessary to use
a precisely spaced regular grid because the data are easily
re-gridded using a variety of commercially available software
packages. This saves time in the data collection stage. Care
was taken to ensure that the point spacing of both the raw
and re-gridded data was much smaller than the wavelength
of the structures analysed, and that there were no high-ampli-
tude minor structures that would distort the analysis. We cre-
ated a surface from the data set using basic interpolation
functionality in GoCAD� (Mallet, 1992); comparable func-
tionality exists in many alternative tools. This step helps to
smooth small-scale irregularities in the data, and will not intro-
duce spurious geometrical features in the interpolated surface
as long as grid spacing is small. The surface is then re-sampled
along an x and y grid to give equally spaced points in both di-
rections. The x and y positions of these new points, together
with each corresponding z (height) value, were exported and
used as an input file for a Matlab� program which was used
to calculate the curvature parameters.

2.2.3. Calculating curvature
The method of calculating curvature used here is mathe-

matically analogous to that used by Bergbauer and Pollard
(2003a). However, it is novel in its use of matrix algebra to
deal with the large data sets acquired using RTK GPS.

For a surface,

r¼

2
4 x

y
zðx; yÞ

3
5 ð3Þ

two orthogonal tangents to the surface are given by the partial
derivatives of the surface in orthogonal directions

vr

vx
¼ rx ¼

2
64

1
0
vz

vx

3
75 ð4Þ

and

vr

vy
¼ ry ¼

2
64

0
1
vz

vy

3
75 ð5Þ

These are used to calculate the matrix of the first fundamental
form of the surface, I (Henderson, 1998, p. 80).

I¼
�

rx$rx rx$ry

rx$ry ry$ry

�
ð6Þ

The second fundamental form, which describes the rate of
change of the normal to the surface as a function of position
(Bergbauer and Pollard, 2003a,b), can also be described by
a matrix composed of second partial derivatives. Because the
matrix describes the rate of change of the normal to the surface
(i.e. the normal curvature), the second partial derivatives are
dotted with the unit normal to the plane which contains the
two tangent vectors (the tangent plane). The unit normal is
found using two of the derivatives already calculated by divid-
ing the cross product of the two vectors (which gives the nor-
mal vector) by its magnitude:

bn¼
vr

vx
� vr

vy����vr

vx
� vr

vy

����
ð7Þ

This cross product function is usually a defined function
within any matrix based mathematics program (e.g. Matlab
or Mathematica) but it should be noted that the determinant
of the cross product of these two vectors can be found by:����vr

vx
� vr

vy

����¼ ffiffiffiffiffi
jIj

p
ð8Þ

The matrix of the second fundamental form, II, is (Hender-
son, 1998, p. 129):

II¼

2
664

v2r

vx2
$bn v2r

vxvy
$bn

v2r

vxvy
$bn v2r

vy2
$bn

3
775 ð9Þ

There is a linear map (a transformation in which every el-
ement is mapped to one other element of the same dimension-
ality, e.g. lines are mapped to lines), L, which maps tangent
space to itself. This map is known in differential geometry
as the shape operator and has several properties which are use-
ful in determining the various curvature parameters described
earlier.

L¼ I�1II ð10Þ

This is analogous to Eq. (9) of Bergbauer and Pollard (2003a).
The normal curvature, kv in a particular direction, v, is de-

fined as a combination of the two tangent vectors described in
Eqs. (4) and (5), and is given by:

kv ¼ LðvÞ$v ð11Þ

where

v¼ a
vr

vx
þ b

vr

vy
ð12Þ

and

LðvÞ ¼ c
vr

vx
þ d

vr

vy
ð13Þ

and where�
c
d

�
¼ L

�
a
b

�
ð14Þ
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describes the relationship between the coefficients of Eqs. (12)
and (13).

More importantly, for the reasons discussed above, the
maximum and minimum principal curvature directions (k1

and k2) and magnitudes can be found by taking the eigenvec-
tors and eigenvalues of L.

The Gaussian curvature, G, is the product of the two princi-
pal curvature values and is also given by the determinant of L.

G¼ k1k2 ¼ jLj ð15Þ

The mean curvature, M, is the mean of k1 and k2 and is also
half the trace (sum of the diagonal elements) of L.

2.2.4. Implementation and checking
When processing the data from Howick, the first partial de-

rivative for each data point was calculated by taking the mean
of the dips of the two edges connecting the point to its adjacent
grid vertices, in the appropriate positive and negative direc-
tions. This could then be repeated for the second partial deriv-
atives using the same method but with the dips of the edges as
input rather than the positions of the vertices themselves. The
relatively simple matrix operations used in this method were
written into Matlab� code which generates an output file re-
turning the x, y, z positions and the various curvature parame-
ters for each point. Our script was checked using synthetically
generated folds for which analytical solutions could be calcu-
lated. The error between the analytically calculated values for
the curvature of the synthetic folds and those derived using
matrix algebra was <1%. This is a very small error which
when combined with the precision of the real data set gives
the ability to analyse the curvature of small-scale folds in
a quantitative way with very high accuracy. As a final check,
normal and Gaussian curvature values for the Howick folds
were compared graphically with curvature functionality in
Midland Valley’s 3-D Move software (http://www.mve.com/
Home/Software/3DMove).

3. Results

Maps of the maximum curvature magnitude and maximum
and minimum curvature directions are shown in Fig. 2a, b and
c respectively. The Gaussian curvature of the sampled surface
is shown in Fig. 2d. The maps of curvature properties can be
draped onto the folded surface and examined further using 3D
visualisation software (Fig. 2e).

3.1. Features highlighted by the maximum
principal curvature

Plotting the magnitude of the maximum principal curvature
(Fig. 2a) highlights antiformal and synformal regions. Plotting
absolute magnitude of curvature (i.e. ignoring whether values
are positive or negative) can often be useful, for example in
showing the spatial distribution of regions where fold tightness
is greatest. By also plotting the maximum principal curvature
direction (Fig. 2b), it is possible to see how the direction of the
maximum curvature changes over the surface. It is not neces-
sary to plot both the maximum and minimum principal curva-
tures on the same plot because by definition these are
perpendicular. Plotting the direction of the maximum principal
curvature is most useful to highlight variations in the orienta-
tion of the fold profile plane, whilst plots of the direction of
the minimum principal curvature allow the position of fold
hinges to be tightly constrained (Fig. 2c).

In the data set from Howick, the main region of maximum
curvature is in the south-western part of the surveyed surface.
Here there are two regions of high absolute curvature, one pos-
itive and one negative; these highlight a synformeantiform
pair. The area between these two hinges represents a short
limb within the asymmetric fold sequence. The overall de-
crease in absolute curvature magnitude northwards shows
that the surface flattens out and that the fold is not cylindrical.
Traditionally, these two geometric properties can make it diffi-
cult to delineate the hinge precisely, and to differentiate be-
tween the hinge and the crest of the fold. The mathematically
defined properties calculated with this data set allow hinge
lines to be constructed by picking points of highest curvature
across a transect, then following the directions of minimum
curvature (k2) from these points (Fig. 2c). Since k1 and k2 are
perpendicular, the hinge lines will always be perpendicular to
k1 and can therefore be accurately defined, even within areas
where the hinge lines are not readily identifiable at the outcrop.

3.2. Features highlighted by the Gaussian curvature

Whilst the maximum curvature shows regions where the
folding is tightest, it may also be useful to identify the area
of highest 3D strain (Lisle, 1994; Lisle and Martinez, 2005;
Smith et al., in preparation). This can be constrained by the
Gaussian curvature calculated according to Eq. (15). The areas
of highest maximum principal curvature at the southern end of
the folded surface are also highlighted by the Gaussian curva-
ture (Fig. 2d) as being a dome and basin pair (G> 0).

Another property of the Gaussian curvature is to highlight
the inflection points of the fold (Lisle, 1999). In 2D fold anal-
ysis, this is where the curvature changes from being positive to
negative and is, therefore, zero (Ramsay, 1967, pp. 346e347).
When considering 3D folds, there will be very few areas where
there is zero curvature in any direction. However, because the
Gaussian curvature is a product of the two principal curvatures
it only requires one of the principals to be 0. For curvilinear
folds, where one of the principal curvatures is 0, the fold is un-
dergoing an inflection. Once these points are identified, they
can then be joined to highlight mathematically defined inflec-
tion lines (Fig. 2c).

4. Discussion

4.1. Small-scale RTK data sets

Newly developed methods of field study that allow quanti-
tative analysis of outcrop-scale structures are now able to pro-
vide new insights at critical sub-seismic scales (Jones et al.,

http://www.mve.com/Home/Software/3DMove
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Fig. 2. Results of curvature analysis from folded bedding surface at Howick: (a) map of variation in magnitude of normal curvature; (b) map showing variation in

the direction of maximum principal curvature, superimposed on the magnitude of normal curvature (for clarity, curvature values close to zero [�0.05< kv<þ0.05]

are not shown); (c) map showing variation in the direction of minimum principal curvature, superimposed on the absolute magnitude of maximum principal cur-

vature, with interpreted hinge and inflection lines shown; (d) map of Gaussian curvature; (e) 3D perspective view of curvature values draped onto the fold with

interpreted hinge and inflection lines (vertical exaggeration �1.5). Units of curvature are m�1.
2004; McCaffrey et al., 2005a,b). In this way, the analysis of
meso-scale fold curvature presented in this paper complements
previous examples of curvature analysis, which were based on
seismic-scale data with a maximum resolution of 20 m (e.g.
Stewart and Wynn, 2000) or on gridded data sets obtained
from regional structure contour maps (Lisle, 1994; Bergbauer
and Pollard, 2003a). A common problem is that it can some-
times be difficult to quantify the uncertainty and precision in
these data sets (Jones et al., 2004). Bergbauer and Pollard
(2003a) used a contour spacing of 100 feet and a data set of
approximately 480 points which is an order of magnitude
fewer than our new data set. Whilst this is sufficient to
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highlight the large scale structure, there may be many other
scales of structure which contribute to the bulk properties of
the rocks (Stewart and Podolski, 1998; Stewart and Wynn,
2000). With a densely sampled, high-precision data set,
smaller scale structures can be imaged and analysed, and
then the data set can be smoothed to examine larger wave-
length structures. The information about the sub-seismic scale
deformation of the rocks can then be incorporated into data
sets for which similar analyses have been carried out at seis-
mic resolution.

4.2. Method of calculating curvature and data display

The method used to calculate the various curvature param-
eters in this paper is based on the mathematics presented by
Bergbauer and Pollard (2003a), but offers an alternative imple-
mentation based on matrix algebra (thus reducing the need for
complex equations involving differential calculus). Software
specially optimised for this type of mathematics (e.g. Mat-
lab�) makes recovery of eigenvalues simple, and in general
is particularly well suited to the efficient analysis of large
data sets (e.g. 105e107 points), including those collected using
other methods of digital data acquisition such as terrestrial la-
ser-scanning (Jones et al., 2004; Clegg et al., 2005).

Results of curvature analysis can easily be imported and
displayed in a variety of GIS software and 3D visualisation
packages. The raw data points can easily be embedded within
larger-scale digital elevation data sets to provide high resolu-
tion models of areas of interest. Using other digital data col-
lection technologies (McCaffrey et al., 2005a; Wilson et al.,
2005) an entire virtual outcrop (Clegg et al., 2005; Trinks
et al., 2005) can be created showing different aspects of inter-
est from the same geological region.

Maps created by analysing intrinsic properties of geological
surfaces can serve as basemaps for other types of data (e.g.
fracture density and orientation) which can influence bulk
rock properties (e.g. permeability and seismic anisotropy).
These data can be collected using conventional field methods
such as line transects or identified from georeferenced laser
scan data sets (Smith et al., in preparation). Comparing geo-
metric data and physical properties enables identification of
systematic spatial variations in the latter with respect to the
former. Relating these sub-seismic to regional-scale structures
(Clegg et al., 2005; Trinks et al., 2005) provides reservoir
modellers with improved fracture data to enhance estimates
of permeability.

5. Conclusion

In this paper, we propose a mathematically efficient solution
to calculate curvature from high density and high-precision
data sets collected using equipment such as RTK GPS. This
method, facilitated by matrix algebra using commercially
available software, calculates the maximum and minimum
principal, Gaussian, and mean curvatures. These provide the
basis for a complete characterisation of the geometry of
folded surfaces and allow some application of traditional 2D
attributes to 3D folds. As a result of this quantitative analysis,
further studies of the relationship between fracturing and the
geometry of deformed rocks will be possible, leading to a better
understanding of the physical properties of the rock volume.
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